Category: Uncategorized

  • Culture-Independent Study of the Late-Stage of a Bloom of the Toxic Dinoflagellate Ostreopsis cf. ovata: Preliminary Findings Suggest Genetic Differences at the Sub-Species Level and Allow ITS2 Structure Characterization.

    Culture-Independent Study of the Late-Stage of a Bloom of the Toxic Dinoflagellate Ostreopsis cf. ovata: Preliminary Findings Suggest Genetic Differences at the Sub-Species Level and Allow ITS2 Structure Characterization.

    Toxins (Basel). 2015;7(7):2514-2533

    Authors: Ramos V, Salvi D, Machado JP, Vale M, Azevedo J, Vasconcelos V

    Abstract
    Available genomic data for the toxic, bloom-forming, benthic Ostreopsis spp. are traditionally obtained from isolates rather than from individuals originally present in environmental samples. Samples from the final phase of the first reported Ostreopsis bloom in European North Atlantic waters (Algarve, south coast of Portugal) were studied and characterized, using a culture-independent approach. In the first instance, a microscopy-based analysis revealed the intricate complexity of the samples. Then, we evaluated the adequacy of commonly used molecular tools (i.e., primers and nuclear ribosomal markers) for the study of Ostreopsis diversity in natural samples. A PCR-based methodology previously developed to identify/detect common Ostreopsis species was tested, including one new combination of existing PCR primers. Two sets of environmental rRNA sequences were obtained, one of them (1052 bp) with the newly tested primer set. These latter sequences encompass both the ITS1-5.8S-ITS2 region and the D1/D2 domain of the LSU rRNA gene, leading us to an accurate identification of ITS2. In turn, this allowed us to predict and show for the first time the ITS2 secondary structure of Ostreopsis. With 92 bp in length and a two-helix structure, the ITS2 of this genus revealed to be unique among the dinoflagellates. Both the PCR approach as the phylogenetic analyses allowed to place the Ostreopsis cells observed in the samples within the O. cf. ovata phylospecies’ complex, discarding the presence of O. cf. siamensis. The (phylo)genetic results point out a certain level of nucleotide sequence divergence, but were inconclusive in relation to a possible geographic origin of the O. cf. ovata population from the Algarve’s bloom.

    PMID: 26134259 [PubMed – as supplied by publisher]

  • Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains.

    Related Articles

    Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains.

    Front Microbiol. 2015;6:404

    Authors: Stüken A, Riobó P, Franco J, Jakobsen KS, Guillou L, Figueroa RI

    Abstract
    Dinoflagellates are microscopic aquatic eukaryotes with huge genomes and an unusual cell regulation. For example, most genes are present in numerous copies and all copies seem to be obligatorily transcribed. The consequence of the gene copy number (CPN) for final protein synthesis is, however, not clear. One such gene is sxtA, the starting gene of paralytic shellfish toxin (PST) synthesis. PSTs are small neurotoxic compounds that can accumulate in the food chain and cause serious poisoning incidences when ingested. They are produced by dinoflagellates of the genera Alexandrium, Gymnodium, and Pyrodinium. Here we investigated if the genomic CPN of sxtA4 is related to PST content in Alexandrium minutum cells. SxtA4 is the 4th domain of the sxtA gene and its presence is essential for PST synthesis in dinoflagellates. We used PST and genome size measurements as well as quantitative PCR to analyze sxtA4 CPN and toxin content in 15 A. minutum strains. Our results show a strong positive correlation between the sxtA4 CPN and the total amount of PST produced in actively growing A. minutum cells. This correlation was independent of the toxin profile produced, as long as the strain contained the genomic domains sxtA1 and sxtA4.

    PMID: 25983733 [PubMed]

  • Dinoflagellate Gene Structure and Intron Splice Sites in a Genomic Tandem Array.

    Dinoflagellate Gene Structure and Intron Splice Sites in a Genomic Tandem Array.

    J Eukaryot Microbiol. 2015 May 12;

    Authors: Mendez GS, Delwiche CF, Apt KE, Lippmeier JC

    Abstract
    Dinoflagellates are one of the last major lineages of eukaryotes for which little is known about genome structure and organization. We report here the sequence and gene structure of a clone isolated from a cosmid library which, to our knowledge, represents the largest contiguously sequenced dinoflagellate genomic tandem gene array. These data, combined with information from a large transcriptomic library, allowed a high level of confidence of every base pair call. This degree of confidence is not possible with PCR-based contigs. The sequence contains an intron-rich set of five highly-expressed gene repeats arranged in tandem. One of the tandem repeat gene members contains an intron 26,372 bp long. This study characterizes a splice-site consensus sequence for dinoflagellate introns. Two to nine base pairs around the 3′ splice site are repeated by an identical two to nine base pairs around the 5′ splice site. The 5′ and 3′ splice sites are in the same locations within each repeat so that the repeat is found only once in the mature mRNA. This identically repeated intron boundary (IRIB) sequence might be useful in gene modeling and annotation of genomes. This article is protected by copyright. All rights reserved.

    PMID: 25963315 [PubMed – as supplied by publisher]

  • Mitochondrial genome of Babesia orientalis, apicomplexan parasite of water buffalo (Bubalus babalis, Linnaeus, 1758) endemic in China.

    Related Articles

    Mitochondrial genome of Babesia orientalis, apicomplexan parasite of water buffalo (Bubalus babalis, Linnaeus, 1758) endemic in China.

    Parasit Vectors. 2014;7:82

    Authors: He L, Zhang Y, Zhang QL, Zhang WJ, Feng HH, Khan MK, Hu M, Zhou YQ, Zhao JL

    Abstract
    BACKGROUND: Apicomplexan parasites of the genus Babesia, Theileria and Plasmodium are very closely related organisms. Interestingly, their mitochondrial (mt) genomes are highly divergent. Among Babesia, Babesia orientalis is a new species recently identified and specifically epidemic to the southern part of China, causing severe disease to water buffalo. However, no information on the mt genome of B. orientalis was available.
    METHODS: Four pairs of primers were designed based on the full genome sequence of B. orientalis (unpublished data) and by aligning reported mt genomes of B. bovis, B. bigemina, and T. parva. The entire mt genome was amplified by four sets of PCR. The obtained mt genome was annotated by aligning with published apicomplexan mt genomes and Artemis software v11. Phylogenetic analysis was performed by using cox1 and cob amino acid sequences.
    RESULTS: The complete mt genome of B. orientalis (Wuhan strain) was sequenced and characterized. The entire mt genome is 5996 bp in length with a linear form, containing three protein-coding genes including cytochrome c oxidase I (cox1), cytochrome b (cob) and cytochrome c oxidase III (cox3) and six rRNA large subunit gene fragments. The gene arrangement in B. orientalis mt genome is similar to those of B. bovis, B. gibsoni and Theileria parva, but different from those of T. orientalis, T. equi and Plasmodium falciparum. Comparative analysis indicated that cox1 and cob genes were more conserved than cox3. Phylogenetic analysis based on amino acid sequences of cox1, cob and cox1 + cob, respectively, revealed that B. orientalis fell into Babesia clade with the closest relationship to B. bovis.
    CONCLUSIONS: The availability of the entire mt genome sequences of B. orientalis provides valuable information for future phylogenetic, population genetics and molecular epidemiological studies of apicomplexan parasites.

    PMID: 24580772 [PubMed – indexed for MEDLINE]

  • Opinion: Conservation and stewardship of the human microbiome.

    Related Articles

    Opinion: Conservation and stewardship of the human microbiome.

    Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14312-3

    Authors: O’Doherty KC, Neufeld JD, Brinkman FS, Gardner H, Guttman DS, Beiko RG

    PMID: 25294925 [PubMed – indexed for MEDLINE]

  • Genomic perspectives on the birth and spread of plastids.

    Related Articles

    Genomic perspectives on the birth and spread of plastids.

    Proc Natl Acad Sci U S A. 2015 Apr 20;

    Authors: Archibald JM

    Abstract
    The endosymbiotic origin of plastids from cyanobacteria was a landmark event in the history of eukaryotic life. Subsequent to the evolution of primary plastids, photosynthesis spread from red and green algae to unrelated eukaryotes by secondary and tertiary endosymbiosis. Although the movement of cyanobacterial genes from endosymbiont to host is well studied, less is known about the migration of eukaryotic genes from one nucleus to the other in the context of serial endosymbiosis. Here I explore the magnitude and potential impact of nucleus-to-nucleus endosymbiotic gene transfer in the evolution of complex algae, and the extent to which such transfers compromise our ability to infer the deep structure of the eukaryotic tree of life. In addition to endosymbiotic gene transfer, horizontal gene transfer events occurring before, during, and after endosymbioses further confound our efforts to reconstruct the ancient mergers that forged multiple lines of photosynthetic microbial eukaryotes.

    PMID: 25902528 [PubMed – as supplied by publisher]

  • Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate.

    Related Articles

    Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate.

    Proc Natl Acad Sci U S A. 2015 Apr 20;

    Authors: Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, Waller RF

    Abstract
    Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes-notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium-highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite’s host. Hematodinium sp. thus represents a further dimension of endosymbiosis-life after the organelle.

    PMID: 25902514 [PubMed – as supplied by publisher]

  • Intra-genomic variation in symbiotic dinoflagellates: recent divergence or recombination between lineages?

    Intra-genomic variation in symbiotic dinoflagellates: recent divergence or recombination between lineages?

    BMC Evol Biol. 2015;15(1):46

    Authors: Wilkinson SP, Fisher PL, van Oppen MJ, Davy SK

    Abstract
    BACKGROUND: The symbiosis between corals and the dinoflagellate alga Symbiodinium is essential for the development and survival of coral reefs. Yet this fragile association is highly vulnerable to environmental disturbance. A coral’s ability to tolerate temperature stress depends on the fitness of its resident symbionts, whose thermal optima vary extensively between lineages. However, the in hospite population genetic structure of Symbiodinium is poorly understood and mostly based on analysis of bulk DNA extracted from thousands to millions of cells. Using quantitative single-cell PCR, we enumerated DNA polymorphisms in the symbionts of the reef-building coral Pocillopora damicornis, and applied a model selection approach to explore the potential for recombination between coexisting Symbiodinium populations.
    RESULTS: Two distinct Symbiodinium ITS2 sequences (denoted C100 and C109) were retrieved from all P. damicornis colonies analysed. However, the symbiont assemblage consisted of three distinct Symbiodinium populations: cells featuring pure arrays of ITS2 type C109, near-homogeneous cells of type C100 (with trace ITS2 copies of type C109), and those with co-dominant C100 and C109 ITS2 repeats. The symbiont consortia of some colonies consisted almost entirely of these putative C100 × C109 recombinants.
    CONCLUSIONS: Our results are consistent with the occurrence of sexual recombination between Symbiodinium types C100 and C109. While the multiple-copy nature of the ITS2 dictates that the observed pattern of intra-genomic co-dominance may be a result of incomplete concerted evolution of intra-genomic polymorphisms, this is a less likely explanation given the occurrence of homogeneous cells of the C109 type. Conclusive evidence for inter-lineage recombination and introgression in this genus will require either direct observational evidence or a single-cell genotyping approach targeting multiple, single-copy loci.

    PMID: 25887753 [PubMed – as supplied by publisher]

  • Eukaryogenesis, how special really?

    Related Articles

    Eukaryogenesis, how special really?

    Proc Natl Acad Sci U S A. 2015 Apr 16;

    Authors: Booth A, Doolittle WF

    Abstract
    Eukaryogenesis is widely viewed as an improbable evolutionary transition uniquely affecting the evolution of life on this planet. However, scientific and popular rhetoric extolling this event as a singularity lacks rigorous evidential and statistical support. Here, we question several of the usual claims about the specialness of eukaryogenesis, focusing on both eukaryogenesis as a process and its outcome, the eukaryotic cell. We argue in favor of four ideas. First, the criteria by which we judge eukaryogenesis to have required a genuinely unlikely series of events 2 billion years in the making are being eroded by discoveries that fill in the gaps of the prokaryote:eukaryote “discontinuity.” Second, eukaryogenesis confronts evolutionary theory in ways not different from other evolutionary transitions in individuality; parallel systems can be found at several hierarchical levels. Third, identifying which of several complex cellular features confer on eukaryotes a putative richer evolutionary potential remains an area of speculation: various keys to success have been proposed and rejected over the five-decade history of research in this area. Fourth, and perhaps most importantly, it is difficult and may be impossible to eliminate eukaryocentric bias from the measures by which eukaryotes as a whole are judged to have achieved greater success than prokaryotes as a whole. Overall, we question whether premises of existing theories about the uniqueness of eukaryogenesis and the greater evolutionary potential of eukaryotes have been objectively formulated and whether, despite widespread acceptance that eukaryogenesis was “special,” any such notion has more than rhetorical value.

    PMID: 25883267 [PubMed – as supplied by publisher]

  • Bayesian long branch attraction bias and corrections.

    Related Articles

    Bayesian long branch attraction bias and corrections.

    Syst Biol. 2015 Mar;64(2):243-55

    Authors: Susko E

    Abstract
    Previous work on the star-tree paradox has shown that Bayesian methods suffer from a long branch attraction bias. That work is extended to settings involving more taxa and partially resolved trees. The long branch attraction bias is confirmed to arise more broadly and an additional source of bias is found. A by-product of the analysis is methods that correct for biases toward particular topologies. The corrections can be easily calculated using existing Bayesian software. Posterior support for a set of two or more trees can thus be supplemented with corrected versions to cross-check or replace results. Simulations show the corrections to be highly effective.

    PMID: 25432892 [PubMed – indexed for MEDLINE]