Claudio Slamovits

Author's posts

Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?

Photosynthetic eukaryotes are the product of an endosymbiotic event between a eukaryotic host and a cyanobacterium that became today’s plastid. A new phylogenomic study suggests that the closest relative of plastids among extant cyanobacteria is the recently discovered freshwater-dwelling Gloeomargarita lithophora. Copyright © 2017 Elsevier Ltd. All rights reserved.

Darwinizing Gaia.

The Gaia hypothesis of James Lovelock was co-developed with and vigorously promoted by Lynn Margulis, but most mainstream Darwinists scorned and still do not accept the notion. They cannot imagine selection for global stability being realized at the level of the individuals or species that make up the biosphere. Here I suggest that we look …

Continue reading

Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut.

Blastocystis spp. are the most prevalent eukaryotic microbes found in the intestinal tract of humans. Here we present an in-depth investigation of lateral gene transfer (LGT) in the genome of Blastocystis sp. subtype 1. Using rigorous phylogeny-based methods and strict validation criteria, we show that ∼2.5% of the genes of this organism were recently acquired …

Continue reading

The Origin of Mitochondrial Cristae from Alphaproteobacteria

Mitochondria are the respiratory organelles of eukaryotes and their evolutionary history is deeply intertwined with that of eukaryotes. The compartmentalization of respiration in mitochondria occurs within cristae, whose evolutionary origin has remained unclear. Recent discoveries, however, have revived the old notion that mitochondrial cristae could have had a pre-endosymbiotic origin. Mitochondrial cristae are likely homologous to the intracytoplasmic membranes (ICMs) used by diverse…

The Origin of Mitochondrial Cristae from Alphaproteobacteria

Mitochondria are the respiratory organelles of eukaryotes and their evolutionary history is deeply intertwined with that of eukaryotes. The compartmentalization of respiration in mitochondria occurs within cristae, whose evolutionary origin has remained unclear. Recent discoveries, however, have revived the old notion that mitochondrial cristae could have had a pre-endosymbiotic origin. Mitochondrial cristae are likely homologous to the intracytoplasmic membranes (ICMs) used by diverse…

Gregarine infection accelerates larval development of the cat flea Ctenocephalides felis (Bouché)

A high degree of specialization between host and parasite is a well-known outcome of a long history of coevolution, and it is strikingly illustrated in a coordination of their life cycles. In some cases, the arms race ensued at the establishment of a symbiotic relationship results in the adoption of manipulative strategies by the parasite. We have already learned that Steinina ctenocephali, a gregarine living in the alimentary canal of cat flea, Ctenocephalides felis follows its phenology and…

The evolution of MICOS: Ancestral and derived functions and interactions

The MItochondrial Contact Site and Cristae Organizing System (MICOS) is required for the biogenesis and maintenance of mitochondrial cristae as well as the proper tethering of the mitochondrial inner and outer membranes. We recently demonstrated that the core components of MICOS, Mic10 and Mic60, are near-ubiquitous eukaryotic features inferred to have been present in the last eukaryote common ancestor. We also showed that Mic60 could be traced to α-proteobacteria, which suggests that…

Evolutionary Origins of Rhizarian Parasites

The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic…

Genetic diversity of avian haemosporidians in Malaysia: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor.

Related Articles
Genetic diversity of avian haemosporidians in Malaysia: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor.
Infect Genet Evol. 2015 Apr;31:33-9
Authors: Iv…

Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

Related Articles

Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

Infect Genet Evol. 2015 Apr;31:53-60

Authors: Terao M, Akter S, Yasin MG, Nakao R, Kato H, Alam MZ, Katakura K

Abstract
Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh.

PMID: 25620376 [PubMed – indexed for MEDLINE]