Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species.

Related Articles

Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species.

Parasitol Int. 2011 Jun;60(2):175-80

Authors: Hikosaka K, Watanabe Y, Kobayashi F, Waki S, Kita K, Tanabe K

Abstract
Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure and organization. The genus Plasmodium, the causative agent of malaria, has the smallest mt genome in the form of a tandemly repeated, linear element of 6 kb. The Plasmodium mt genome encodes only three protein genes (cox1, cox3 and cob) and large- and small-subunit ribosomal RNA (rRNA) genes, which are highly fragmented with 19 identified rRNA pieces. The complete mt genome sequences of 21 Plasmodium species have been published but a thorough investigation of the arrangement of rRNA gene fragments has been undertaken for only Plasmodium falciparum, the human malaria parasite. In this study, we determined the arrangement of mt rRNA gene fragments in 23 Plasmodium species, including two newly determined mt genome sequences from P. gallinaceum and P. vinckei vinckei, as well as Leucocytozoon caulleryi, an outgroup of Plasmodium. Comparative analysis reveals complete conservation of the arrangement of rRNA gene fragments in the mt genomes of all the 23 Plasmodium species and L. caulleryi. Surveys for a new rRNA gene fragment using hidden Markov models enriched with recent mt genome sequences led us to suggest the mtR-26 sequence as a novel candidate LSU rRNA fragment in the mt genomes of the 24 species. Additionally, we found 22-25 bp-inverted repeat sequences, which may be involved in the generation of lineage-specific mt genome arrangements after divergence from a common ancestor of the genera Eimeria and Plasmodium/Leucocytozoon.

PMID: 21329764 [PubMed - indexed for MEDLINE]