February 2013 archive

A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria.

A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria.
PLoS One. 2013;8(2):e56777
Authors: Jackson CJ, Waller RF
Abstract
Cytochrome oxidase subunit 3 (Cox3) is a mitochondrion-enco…

Tier I Canada Research Chair in Environmental Biochemistry in Concordia University

The Department of Chemistry and Biochemistry invites applications for one Tier I Canada Research Chair (CRC) in Environmental Biochemistry. This position is directly linked to priority areas in Concordia University’s Strategic Research Plan (2008-12): http://oor.concordia.ca/formsandreferencedocuments/strategicresearchplan/ The successful candidate will have established a highly visible, internationally recognized, innovative research program in environmental biochemistry, as demonstrated by …

Continue reading

A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes.

Related Articles

A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes.

Genome Biol Evol. 2013 Feb 9;

Authors: Fulnecková J, Sevcíková T, Fajkus J, Lukesová A, Lukes M, Vlcek C, Lang BF, Kim E, Eliás M, Sykorová E

Abstract
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: (1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; (2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; (3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; (4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.

PMID: 23395982 [PubMed – as supplied by publisher]

Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community.

Related Articles

Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community.

BMC Genomics. 2012;13:327

Authors: Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA

Abstract
UNLABELLED: ABSTRACT:
BACKGROUND: The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions.A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth.
RESULTS: The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the ∂-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth.
CONCLUSIONS: Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms’ identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures.

PMID: 22823523 [PubMed – indexed for MEDLINE]

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.

Related Articles

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.

Nature. 2012 Dec 6;492(7427):59-65

Authors: Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida K, Kim E, Kořený L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM

Abstract
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

PMID: 23201678 [PubMed – indexed for MEDLINE]

The revised classification of eukaryotes.

Related Articles

The revised classification of eukaryotes.

J Eukaryot Microbiol. 2012 Sep;59(5):429-93

Authors: Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW

Abstract
This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.

PMID: 23020233 [PubMed – indexed for MEDLINE]

A contribution to the history of the proton channel.

A contribution to the history of the proton channel.

Wiley Interdiscip Rev Membr Transp Signal. 2012 Sep;1(5):533-557

Authors: Meech R

Abstract
The low numbers of hydrogen ions in physiological solutions encouraged the assumption that H(+) currents flowing through conductive pathways would be so small as to be unmeasurable even if theoretically possible. Evidence for an H(+)-based action potential in the luminescent dinoflagellate Noctiluca and for an H(+)-conducting channel created by the secretions of the bacterium Bacillus brevis, did little to alter this perception. The clear demonstration of H(+) conduction in molluscan neurons might have provided the breakthrough but the new pathway was without an easily demonstrable function, and escaped general attention. Indeed the extreme measures that must be taken to successfully isolate H(+) currents meant that it was some years before proton channels were identified in mammalian cells. However, with the general availability of patch-clamp techniques and evidence for an important role in mammalian neutrophils, the stage was set for a series of structure/function studies with the potential to make the proton channel the best understood channel of all. In addition, widespread genomic searches have established that proton channels play important roles in processes ranging from fertilization of the human ovum to the progression of breast cancer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

PMID: 23365805 [PubMed – as supplied by publisher]