The Corradi Lab is currently seeking a Postdoctoral Fellow in the field of Fungal Comparative and Population Genomics. The research will be led by Dr. Nicolas Corradi and carried out in a CIFAR (Canadian Institute for Advanced Research) – affiliated laboratory located in the Department of Biology of the University of Ottawa, Canada.
The position will be initially funded for one year, with the possibility of renewal for up to three years depending on performance. The candidate is expected to contribute to several ongoing projects that focus on the population genomics of two evolutionary unrelated groups of fungi: the Arbuscular Mycorrhizal Fungi (AMF) and the Microsporidia. Enquiries about specific projects can be sent to Dr. Nicolas Corradi (ncorradi@uottawa.ca).
Applicants are expected to have a background in comparative genomics or populations genomics. A strong experience in either Population Genetics, Environmental Genomics, Metagenomics, or ab-initio gene annotation and programming will be seen as an strong asset for the final selection of the candidate. Basic knowledge of Linux is required.
A complete application package includes a CV, a one-page description of past research accomplishments and future goals, and the names and e-mail addresses of at least 2 references. Evaluation of applications starts immediately and will continue until a suitable candidate is found.
The University of Ottawa is a large, research-intensive university, hosting over 40.000 students and located in the downtown core area of Canada’s capital city (http://www.science.uottawa.ca/fac/welcome.html). Ottawa is a vibrant, multicultural city with a very high quality of life (http://www.ottawatourism.ca/fr/)
Applications can be sent to Dr. Nicolas Corradi (ncorradi@uottawa.ca).
Representative publications:
– Riley R. et al. 2014. Extreme Diversification of the MATA-HMG Gene Family in the Plant – Associated Arbuscular Mycorrhizal Fungi. New Phytologist. 201: 254–268
– James T.Y et al. 2013. Shared signatures of parasitism and phylogenomics unite the Cryptomycota and Microsporidia. Current Biology. 23 (16), 1548–1553
– Tisserant E. et al. The arbuscular mycorrhizal Glomus genome provides insights into the evolution of the oldest plant symbiosis. Proceedings of the National Academy of Sciences – USA. 110 (50), 20117-20122R576-R577
– Pombert J.F. et al. 2012. Gain and loss of multiple functionally-related horizontally transferred genes in the reduced genomes of two microsporidian parasites. Proceedings of the National Academy of Sciences – USA 109(31):12638-43
– Selman M. et al. 2011. Acquisition of an animal gene by two microsporidia. 2011. Current Biology 21: R576-R577
Recent Comments