Author's posts

Nephromyces, a beneficial apicomplexan symbiont in marine animals

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted…

Nephromyces, a beneficial apicomplexan symbiont in marine animals

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted…

Nephromyces, a beneficial apicomplexan symbiont in marine animals

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted…

Nephromyces, a beneficial apicomplexan symbiont in marine animals

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted…

Nephromyces, a beneficial apicomplexan symbiont in marine animals

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted…

Evolution of ultrasmall spliceosomal introns in highly reduced nuclear genomes

Intron reduction and loss is a significant component of genome compaction in many eukaryotic lineages, including yeasts, microsporidia, and some nucleomorphs. Nucleomorphs are the extremely reduced relicts of algal endosymbiont nuclei found in two lineages, cryptomonads and chlorarachniophytes. In cryptomonads, introns are rare or even lost altogether. In contrast, the nucleomorph of the chlorarachniophyte Bigelowiella natans contains the smallest nuclear genome known but paradoxically also…

Nuclear genome sequence survey of the Dinoflagellate Heterocapsa triquetra

Dinoflagellates have among the largest nuclear genomes known, but we know little about their contents or organisation. Given the interest in dinoflagellate ecology, cell biology, and evolutionary biology, there are many reasons to thoroughly investigate the contents of dinoflagellate genomes, but because of their large size the only thorough samples to date have relied on expressed sequence tag surveys to analyse cDNAs. To complement this, there are some studies of the physical properties of…

Widespread recycling of processed cDNAs in dinoflagellates

No abstract

Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina

Reconstructing the history of plastid acquisition and loss in the alveolate protists is a difficult problem because our knowledge of the distribution of plastids in extant lineages is incomplete due to the possible presence of cryptic, nonphotosynthetic plastids in several lineages. The discovery of the apicoplast in apicomplexan parasites has drawn attention to this problem and, more specifically, to the question of whether many other nonphotosynthetic lineages also contain cryptic plastids or…

The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes

The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis…