Category: Dinoflagellate genomics

Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms

Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a…

Genome-wide transcriptome analysis reveals the diversity and function of long non-coding RNAs in dinoflagellates

Dinoflagellates are a diverse group of phytoplankton, ranging from harmful bloom-forming microalgae to photosymbionts of coral reefs. Genome-scale data from dinoflagellates reveal atypical genomic features, extensive genomic divergence, and lineage-specific innovation of gene functions. Long non-coding RNAs (lncRNAs), known to regulate gene expression in eukaryotes, are largely unexplored in dinoflagellates. Here, using high-quality genome and transcriptome data, we identified 48039…

Genome-wide transcriptome analysis reveals the diversity and function of long non-coding RNAs in dinoflagellates

Dinoflagellates are a diverse group of phytoplankton, ranging from harmful bloom-forming microalgae to photosymbionts of coral reefs. Genome-scale data from dinoflagellates reveal atypical genomic features, extensive genomic divergence, and lineage-specific innovation of gene functions. Long non-coding RNAs (lncRNAs), known to regulate gene expression in eukaryotes, are largely unexplored in dinoflagellates. Here, using high-quality genome and transcriptome data, we identified 48039…

Genomic Data Reveal Diverse Biological Characteristics of Scleractinian Corals and Promote Effective Coral Reef Conservation

Reef-building corals (Scleractinia, Anthozoa, Cnidaria) are the keystone organisms of coral reefs, which constitute the most diverse marine ecosystems. Since the first decoded coral genome reported in 2011, about 40 reference genomes are registered as of 2023. Comparative genomic analyses of coral genomes have revealed genomic characters that may underlie unique biological characteristics and coral diversification. These include existence of genes for biosynthesis of mycosporine-like amino…

Genomic Data Reveal Diverse Biological Characteristics of Scleractinian Corals and Promote Effective Coral Reef Conservation

Reef-building corals (Scleractinia, Anthozoa, Cnidaria) are the keystone organisms of coral reefs, which constitute the most diverse marine ecosystems. Since the first decoded coral genome reported in 2011, about 40 reference genomes are registered as of 2023. Comparative genomic analyses of coral genomes have revealed genomic characters that may underlie unique biological characteristics and coral diversification. These include existence of genes for biosynthesis of mycosporine-like amino…

Ordovician origin and subsequent diversification of the brown algae

Brown algae are the only group of heterokont protists exhibiting complex multicellularity. Since their origin, brown algae have adapted to various marine habitats, evolving diverse thallus morphologies and gamete types. However, the evolutionary processes behind these transitions remain unclear due to a lack of a robust phylogenetic framework and problems with time estimation. To address these issues, we employed plastid genome data from 138 species, including heterokont algae, red algae, and…

Ordovician origin and subsequent diversification of the brown algae

Brown algae are the only group of heterokont protists exhibiting complex multicellularity. Since their origin, brown algae have adapted to various marine habitats, evolving diverse thallus morphologies and gamete types. However, the evolutionary processes behind these transitions remain unclear due to a lack of a robust phylogenetic framework and problems with time estimation. To address these issues, we employed plastid genome data from 138 species, including heterokont algae, red algae, and…

DsRNA sequencing revealed a previously missed terminal sequence of a +ssRNA virus that infects dinoflagellate Heterocapsa circularisquama

Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus cultured. However, only two strains of HcRNAV have been registered with complete genome sequences (strains 34 and 109 for UA and CY types, respectively). To extend the genomic information of HcRNAV, we performed full-genome sequencing of an unsequenced strain of HcRNAV (strain A8) using the fragmented and primer-ligated double-stranded RNA (dsRNA) sequencing (FLDS) method. The complete genome of HcRNAV…

DsRNA sequencing revealed a previously missed terminal sequence of a +ssRNA virus that infects dinoflagellate Heterocapsa circularisquama

Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus cultured. However, only two strains of HcRNAV have been registered with complete genome sequences (strains 34 and 109 for UA and CY types, respectively). To extend the genomic information of HcRNAV, we performed full-genome sequencing of an unsequenced strain of HcRNAV (strain A8) using the fragmented and primer-ligated double-stranded RNA (dsRNA) sequencing (FLDS) method. The complete genome of HcRNAV…

Novel plastid genome characteristics in Fugacium kawagutii and the trend of accelerated evolution of plastid proteins in dinoflagellates

Typical (peridinin-containing) dinoflagellates possess plastid genomes composed of small plasmids named ‘minicircles’. Despite the ecological importance of dinoflagellate photosynthesis in corals and marine ecosystems, the structural characteristics, replication dynamics, and evolutionary forcing of dinoflagellate plastid genomes remain poorly understood. Here we sequenced the plastid genome of the symbiodiniacean species Fugacium kawagutii and conducted comparative analyses. We identified…