Category: Uncategorized

A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria.

A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria.
PLoS One. 2013;8(2):e56777
Authors: Jackson CJ, Waller RF
Abstract
Cytochrome oxidase subunit 3 (Cox3) is a mitochondrion-enco…

Tier I Canada Research Chair in Environmental Biochemistry in Concordia University

The Department of Chemistry and Biochemistry invites applications for one Tier I Canada Research Chair (CRC) in Environmental Biochemistry. This position is directly linked to priority areas in Concordia University’s Strategic Research Plan (2008-12): http://oor.concordia.ca/formsandreferencedocuments/strategicresearchplan/ The successful candidate will have established a highly visible, internationally recognized, innovative research program in environmental biochemistry, as demonstrated by …

Continue reading

A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes.

Related Articles

A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes.

Genome Biol Evol. 2013 Feb 9;

Authors: Fulnecková J, Sevcíková T, Fajkus J, Lukesová A, Lukes M, Vlcek C, Lang BF, Kim E, Eliás M, Sykorová E

Abstract
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: (1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; (2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; (3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; (4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.

PMID: 23395982 [PubMed – as supplied by publisher]

Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community.

Related Articles

Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community.

BMC Genomics. 2012;13:327

Authors: Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA

Abstract
UNLABELLED: ABSTRACT:
BACKGROUND: The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions.A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth.
RESULTS: The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the ∂-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth.
CONCLUSIONS: Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms’ identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures.

PMID: 22823523 [PubMed – indexed for MEDLINE]

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.

Related Articles

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.

Nature. 2012 Dec 6;492(7427):59-65

Authors: Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida K, Kim E, Kořený L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM

Abstract
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

PMID: 23201678 [PubMed – indexed for MEDLINE]

The revised classification of eukaryotes.

Related Articles

The revised classification of eukaryotes.

J Eukaryot Microbiol. 2012 Sep;59(5):429-93

Authors: Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW

Abstract
This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.

PMID: 23020233 [PubMed – indexed for MEDLINE]

A contribution to the history of the proton channel.

A contribution to the history of the proton channel.

Wiley Interdiscip Rev Membr Transp Signal. 2012 Sep;1(5):533-557

Authors: Meech R

Abstract
The low numbers of hydrogen ions in physiological solutions encouraged the assumption that H(+) currents flowing through conductive pathways would be so small as to be unmeasurable even if theoretically possible. Evidence for an H(+)-based action potential in the luminescent dinoflagellate Noctiluca and for an H(+)-conducting channel created by the secretions of the bacterium Bacillus brevis, did little to alter this perception. The clear demonstration of H(+) conduction in molluscan neurons might have provided the breakthrough but the new pathway was without an easily demonstrable function, and escaped general attention. Indeed the extreme measures that must be taken to successfully isolate H(+) currents meant that it was some years before proton channels were identified in mammalian cells. However, with the general availability of patch-clamp techniques and evidence for an important role in mammalian neutrophils, the stage was set for a series of structure/function studies with the potential to make the proton channel the best understood channel of all. In addition, widespread genomic searches have established that proton channels play important roles in processes ranging from fertilization of the human ovum to the progression of breast cancer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

PMID: 23365805 [PubMed – as supplied by publisher]

The probability of correctly resolving a split as an experimental design criterion in phylogenetics.

Related Articles
The probability of correctly resolving a split as an experimental design criterion in phylogenetics.
Syst Biol. 2012 Oct;61(5):811-21
Authors: Susko E, Roger AJ
Abstract
We illustrate how rec…

Characterisation of full-length mitochondrial copies and partial nuclear copies (numts) of the cytochrome b and cytochrome c oxidase subunit I genes of Toxoplasma gondii, Neospora caninum, Hammondia heydorni and Hammondia triffittae (Apicomplexa: Sarcocystidae).

Related Articles

Characterisation of full-length mitochondrial copies and partial nuclear copies (numts) of the cytochrome b and cytochrome c oxidase subunit I genes of Toxoplasma gondii, Neospora caninum, Hammondia heydorni and Hammondia triffittae (Apicomplexa: Sarcocystidae).

Parasitol Res. 2013 Jan 29;

Authors: Gjerde B

Abstract
Genomic DNA was extracted from three oocyst isolates of Hammondia triffittae from foxes and two oocyst isolates of Hammondia heydorni from dogs, as well as from cell culture-derived tachyzoites of Toxoplasma gondii (RH strain) and Neospora caninum (NC-Liverpool strain), and examined by PCR with primers targeting the cytochrome b (cytb) and the cytochrome c oxidase subunit I (cox1) genes in order to characterise both genes and, if possible, the remainder of the mitochondrial genome of these species. Several primers were designed and used in various combinations to amplify regions within and between both genes and to determine gene order. When certain forward primers targeting cytb were used in combination with certain reverse primers targeting cox1, two overlapping sequences were obtained for each species and isolate studied, which showed that a full-length copy of cytb was followed 36-37 bp downstream by a full-length copy of cox1, and these sequences are believed to represent the true mitochondrial genes and the gene order in the mitochondrial genome of the four species examined. The cytb of T. gondii, N. caninum, H. heydorni and H. triffittae comprised a total of 1,080 bp (359 amino acids) and used ATG and TAA as start and stop codon, respectively. The cox1 of these species also used TAA as stop codon, whereas the most likely start codon was ATG, resulting in a gene comprising 1,491 bp (496 amino acids). Pair-wise sequence comparisons based on either cytb or cox1 clearly separated T. gondii from N. caninum and both of these species from the two Hammondia species, whereas the latter two species were 100 % identical at cytb and shared 99.3 % identity at cox1. Phylogenetic analyses using the maximum-likelihood method confirmed these findings and placed T. gondii in a clade separate from the three other species and all four Toxoplasmatinae in a sister clade to Eimeria spp. PCR with other primers and/or primer pairs than those used to obtain the full-length mitochondrial genes yielded several types of about 1-1.5 kb long sequences, which comprised stretches of the primer-targeted genes at both ends and an intervening non-coding sequence of various length and composition. Thus, portions of cytb could be found both upstream and downstream from portions of cox1 and portions of the same gene could be found adjacent to each other (cytb→cox1; cox1→cytb; cytb→cytb; cox1→cox1). Sequence comparisons revealed that some of these gene fragments were truncated genes, whereas others included the putative start or stop codon of the full-length mitochondrial genes. From the nature of the gene fragments and/or their flanking sequences, they are assumed to be located on the chromosomes of the nuclear genome and to represent nuclear mitochondrial DNA segments (numts) or pseudogenes. In the four species examined, there were no nucleotide differences between the full-length mitochondrial copies of cytb and cox1 and their various incomplete nuclear counterparts. With a few exceptions, identical numt types and closely similar flanking sequences were obtained for all four species, which would indicate that the original transfer of these mitochondrial genes to the nuclear genome and/or the majority of any subsequent rearrangements of these gene fragments within the nuclear genome happened before the four species diverged. Yet, there were species-specific differences in the nucleotide composition of the nuclear gene fragments, identical to the differences in the mitochondrial genes, which would indicate that the incomplete nuclear copies of cytb and cox1 have been continuously updated during evolution to conform to their mitochondrial parent genes. The PCR-based findings of numts were further supported by Basic Local Alignment Search Tool (BLAST) searches against genome sequences of T. gondii and N. caninum using the concatenated mitochondrial cytb/cox1 sequences as queries. These searches revealed the presence of numerous numts of eighth distinct types in both species, with each one having a fixed starting and end point with respect to the nucleotide positions in the full-length mitochondrial genes. Four numt types were completely homologous between both species, whereas four other types differed with respect to their end point and/or the absence/presence of a 96-bp deletion. Each starting and end point was associated with a unique 100-200-bp long flanking sequence, which further revealed the presence of numts. For both species, the numt types and their various arrangements with respect to each other were identical or similar to those obtained by PCR in all four species examined. None of the identified numts covered a full-length gene, but together, the various numts covered the entire mitochondrial cytb and cox1 genes in an overlapping manner. In addition, they were fairly closely spaced on the chromosomes, and these features may explain why the nuclear copies were preferentially amplified to the exclusion of the true mitochondrial genes with most primers and primer pairs used in the present study. The possibility of a similar high prevalence of numts occurring in the nuclear genome of dinoflagellates is discussed.

PMID: 23358734 [PubMed – as supplied by publisher]

Postdoctoral position in Paris: Protist diversity and phylogeny in suboxic environments

  A postdoctoral contract of 1 year renewable up to 3 years is available in the “Microbial diversity and evolution” team at the institute of Ecology, Systematics and Evolution starting from September 2013 (dates are negotiable). The institute belongs to the French Research Council (CNRS) and the University of Paris-Sud, and is located at the …

Continue reading