Global warming increases the temperature of the ocean surface, disrupting dinoflagellate-coral symbiosis and resulting in a phenomenon called coral bleaching. Photosynthetic dinoflagellates of the family Symbiodiniaceae include bleaching-tolerant and bleaching-sensitive coral symbionts. Therefore, understanding the molecular mechanisms for changing symbiont diversity is potentially useful to assist recovery of coral holobionts (corals and their associated microbes, including multiple species of…
Category: Dinoflagellate genomics
Oct 26
Gene clusters for biosynthesis of mycosporine-like amino acids in dinoflagellate nuclear genomes: Possible recent horizontal gene transfer between species of Symbiodiniaceae (Dinophyceae)
Global warming increases the temperature of the ocean surface, disrupting dinoflagellate-coral symbiosis and resulting in a phenomenon called coral bleaching. Photosynthetic dinoflagellates of the family Symbiodiniaceae include bleaching-tolerant and bleaching-sensitive coral symbionts. Therefore, understanding the molecular mechanisms for changing symbiont diversity is potentially useful to assist recovery of coral holobionts (corals and their associated microbes, including multiple species of…
Oct 18
Diel-Regulated Transcriptional Cascades of Microbial Eukaryotes in the North Pacific Subtropical Gyre
Open-ocean surface waters host a diverse community of single-celled eukaryotic plankton (protists) consisting of phototrophs, heterotrophs, and mixotrophs. The productivity and biomass of these organisms oscillate over diel cycles, and yet the underlying transcriptional processes are known for few members of the community. Here, we examined a 4-day diel time series of transcriptional abundance profiles for the protist community (0.2-100 μm in cell size) in the North Pacific Subtropical Gyre near…
Sep 29
Mini-synplastomes for plastid genetic engineering
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over thirty-years-old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the “mini-synplastome.” The mini-synplastome was inspired by dinoflagellate plastome…
Sep 29
Mini-synplastomes for plastid genetic engineering
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over thirty-years-old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the “mini-synplastome.” The mini-synplastome was inspired by dinoflagellate plastome…
Sep 23
Development of the Myzozoan Aquatic Parasite Perkinsus marinus as A Versatile Experimental Genetic Model Organism
The phylum Perkinsozoa is an aquatic parasite lineage that has devastating effects on commercial and natural mollusc populations, and also comprises parasites of algae, fish and amphibians. They are related to dinoflagellates and apicomplexans and thus offer excellent genetic models for both parasitological and evolutionary studies. Genetic transformation was previously achieved for Perkinsus spp. but with few tools for transgene expression and limited selection efficacy. We sought to expand the…
Sep 23
Development of the Myzozoan Aquatic Parasite Perkinsus marinus as A Versatile Experimental Genetic Model Organism
The phylum Perkinsozoa is an aquatic parasite lineage that has devastating effects on commercial and natural mollusc populations, and also comprises parasites of algae, fish and amphibians. They are related to dinoflagellates and apicomplexans and thus offer excellent genetic models for both parasitological and evolutionary studies. Genetic transformation was previously achieved for Perkinsus spp. but with few tools for transgene expression and limited selection efficacy. We sought to expand the…
Sep 07
The cell wall polysaccharides of a photosynthetic relative of apicomplexans, Chromera velia
Chromerids are a group of alveolates, found in corals, that show peculiar morphological and genomic features. These organisms are evolutionary placed in-between symbiotic dinoflagellates and parasitic apicomplexans. There are two known species of chromerids: Chromera velia and Vitrella brassicaformis. Here, the biochemical composition of C. velia cell wall was analyzed. Several polysaccharides adorn this structure, with glucose being the most abundant monosaccharide (approx. 80%) and…
Aug 14
Spatial organization of dinoflagellate genomes: novel insights and remaining critical questions
As is true for many other aspects, genome architecture, evolution, and function in dinoflagellates are enigmatic and, in the meantime, continuous inspiration for scientific quests. Recent third-generation sequencing and Hi-C linkage analyses brought new insights into the spatial organization of symbiodiniacean genomes, revealing the topologically associated domains, discrete gene clusters and their cis and trans orientations, and relationships with transcription. Where do these new findings…
Aug 14
Spatial organization of dinoflagellate genomes: novel insights and remaining critical questions
As is true for many other aspects, genome architecture, evolution, and function in dinoflagellates are enigmatic and, in the meantime, continuous inspiration for scientific quests. Recent third-generation sequencing and Hi-C linkage analyses brought new insights into the spatial organization of symbiodiniacean genomes, revealing the topologically associated domains, discrete gene clusters and their cis and trans orientations, and relationships with transcription. Where do these new findings…
Recent Comments