Category: Our papers

The evolution of MICOS: Ancestral and derived functions and interactions

The MItochondrial Contact Site and Cristae Organizing System (MICOS) is required for the biogenesis and maintenance of mitochondrial cristae as well as the proper tethering of the mitochondrial inner and outer membranes. We recently demonstrated that the core components of MICOS, Mic10 and Mic60, are near-ubiquitous eukaryotic features inferred to have been present in the last eukaryote common ancestor. We also showed that Mic60 could be traced to α-proteobacteria, which suggests that…

Evolutionary Origins of Rhizarian Parasites

The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic…

Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae.

Related Articles

Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae.

Curr Biol. 2015 Jun 1;25(11):1489-95

Authors: Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG

Abstract
Mitochondria are eukaryotic organelles that originated from an endosymbiotic α-proteobacterium. As an adaptation to maximize ATP production through oxidative phosphorylation, mitochondria contain inner membrane invaginations called cristae. Recent work has characterized a multi-protein complex in yeast and animal mitochondria called MICOS (mitochondrial contact site and cristae organizing system), responsible for the determination and maintenance of cristae [1-4]. However, the origin and evolution of these characteristic mitochondrial features remain obscure. We therefore conducted a comprehensive search for MICOS components across the major groups that encompass eukaryotic diversity to determine the extent of conservation of this complex. We detected homologs for the majority of MICOS components among opisthokonts (the group containing animals and fungi), but only Mic60 and Mic10 were consistently identified outside this group. The conservation of Mic60 and Mic10 in eukaryotes is consistent with their central role in MICOS function [5-7], indicating that the basic mechanism for cristae determination arose early in evolution and has remained relatively unchanged. We found that eukaryotes with ultrastructurally simplified anaerobic mitochondria that lack cristae have also lost MICOS. We then searched for a prokaryotic MICOS and identified a homolog of Mic60 present only in α-proteobacteria, providing evidence for the endosymbiotic origin of mitochondrial cristae. Our study clarifies the origins of mitochondrial cristae and their subsequent evolutionary history, provides evidence for a general mechanism of cristae formation and maintenance in eukaryotes, and points to a new potential factor involved in membrane differentiation in prokaryotes.

PMID: 26004762 [PubMed – in process]

Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae

Mitochondria are eukaryotic organelles that originated from an endosymbiotic α-proteobacterium. As an adaptation to maximize ATP production through oxidative phosphorylation, mitochondria contain inner membrane invaginations called cristae. Recent work has characterized a multi-protein complex in yeast and animal mitochondria called MICOS (mitochondrial contact site and cristae organizing system), responsible for the determination and maintenance of cristae [1-4]. However, the origin and…

Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes

The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are…

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world’s oceans.

Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites

Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the…

Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas pontica, a Close Relative of Chromerids and Apicomplexan Parasites

Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes …

Continue reading

Analysis of EST data of the marine protist Oxyrrhis marina, an emerging model for alveolate biology and evolution

CONCLUSION: The dataset presented here has proven very valuable for studying this important group of protists. Our analysis indicates that gene redundancy is a pervasive feature of dinoflagellate genomes, thus the mechanisms involved in its generation must have arisen early in the evolution of the group.

Revisiting the evolutionary history and roles of protein phosphatases with Kelch-like domains in plants

Protein phosphatases with Kelch-like domains (PPKL) are members of the phosphoprotein phosphatases family present only in plants and alveolates. PPKL have been described as positive effectors of brassinosteroid (BR) signaling in plants. Most of the evidence supporting this role has been gathered using one of the four homologs in Arabidopsis (Arabidopsis thaliana), brassinosteroid-insensitive1 suppressor (BSU1). We reappraised the roles of the other three members of the family, BSL1, BSL2, and…