Category: Our papers

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta…

Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage

Arbuscular mycorrhizal fungi (AMF) represent an ecologically important and evolutionarily intriguing group of symbionts of land plants, currently thought to have propagated clonally for over 500 Myr. AMF produce multinucleate spores and may exchange nuclei through anastomosis, but meiosis has never been observed in this group. A provocative alternative for their successful and long asexual evolutionary history is that these organisms may have cryptic sex, allowing them to recombine alleles and…

Phylogenetic position of Lophomonas striata Bütschli (Parabasalia) from the hindgut of the cockroach Periplaneta americana

Lophomonas striata is a multiflagellate parabasalid commensal in the hindgut of the omnivorous cockroaches Blatta orientalis and Periplaneta americana. Its closest relatives were traditionally thought to include similar multiflagellate parabasalids with a single flagellar area that degenerates during mitosis, such as Joenia and Kofoidia. However, molecular phylogenetic analyses have shown that “lophomonads” are not monophyletic. We have determined the SSU rRNA sequence of L. striata and we find…

A bacterial proteorhodopsin proton pump in marine eukaryotes

Proteorhodopsins are light-driven proton pumps involved in widespread phototrophy. Discovered in marine proteobacteria just 10 years ago, proteorhodopsins are now known to have been spread by lateral gene transfer across diverse prokaryotes, but are curiously absent from eukaryotes. In this study, we show that proteorhodopsins have been acquired by horizontal gene transfer from bacteria at least twice independently in dinoflagellate protists. We find that in the marine predator Oxyrrhis marina,…

The intriguing nature of microsporidian genomes

Microsporidia are a group of highly adapted unicellular fungi that are known to infect a wide range of animals, including humans and species of great economic importance. These organisms are best known for their very simple cellular and genomic features, an adaptive consequence of their obligate intracellular parasitism. In the last decade, the acquisition of a large amount of genomic and transcriptomic data from several microsporidian species has greatly improved our understanding of the…

Nephromyces, a beneficial apicomplexan symbiont in marine animals

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted…

Evolution of ultrasmall spliceosomal introns in highly reduced nuclear genomes

Intron reduction and loss is a significant component of genome compaction in many eukaryotic lineages, including yeasts, microsporidia, and some nucleomorphs. Nucleomorphs are the extremely reduced relicts of algal endosymbiont nuclei found in two lineages, cryptomonads and chlorarachniophytes. In cryptomonads, introns are rare or even lost altogether. In contrast, the nucleomorph of the chlorarachniophyte Bigelowiella natans contains the smallest nuclear genome known but paradoxically also…

Nuclear genome sequence survey of the Dinoflagellate Heterocapsa triquetra

Dinoflagellates have among the largest nuclear genomes known, but we know little about their contents or organisation. Given the interest in dinoflagellate ecology, cell biology, and evolutionary biology, there are many reasons to thoroughly investigate the contents of dinoflagellate genomes, but because of their large size the only thorough samples to date have relied on expressed sequence tag surveys to analyse cDNAs. To complement this, there are some studies of the physical properties of…

Widespread recycling of processed cDNAs in dinoflagellates

No abstract

Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina

Reconstructing the history of plastid acquisition and loss in the alveolate protists is a difficult problem because our knowledge of the distribution of plastids in extant lineages is incomplete due to the possible presence of cryptic, nonphotosynthetic plastids in several lineages. The discovery of the apicoplast in apicomplexan parasites has drawn attention to this problem and, more specifically, to the question of whether many other nonphotosynthetic lineages also contain cryptic plastids or…