Category: Dinoflagellate genomics

The Caspase Homologues in Scallop Chlamys farreri and Their Expression Responses to Toxic Dinoflagellates Exposure

The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (Chlamys farreri) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop…

Gymnodinialimonas ceratoperidinii gen. nov., sp. nov., isolated from rare marine dinoflagellate Ceratoperidinium margalefii

A bacterial strain, designated J12C1-MA-4^(T), was isolated from liquid culture of the dinoflagellate Ceratoperidinium margalefii. The bacterium was Gram-negative, aerobic, and rod-shaped. Oxidase and catalase were positive. Optimal growth was observed at 30 °C, pH 7.0, in the presence of 1% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene and a 92 core gene set suggested that the strain J12C1-MA-4^(T) belongs to the family Rhodobacteraceae in the class Alphaproteobacteria and represents…

Gymnodinialimonas ceratoperidinii gen. nov., sp. nov., isolated from rare marine dinoflagellate Ceratoperidinium margalefii

A bacterial strain, designated J12C1-MA-4^(T), was isolated from liquid culture of the dinoflagellate Ceratoperidinium margalefii. The bacterium was Gram-negative, aerobic, and rod-shaped. Oxidase and catalase were positive. Optimal growth was observed at 30 °C, pH 7.0, in the presence of 1% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene and a 92 core gene set suggested that the strain J12C1-MA-4^(T) belongs to the family Rhodobacteraceae in the class Alphaproteobacteria and represents…

Alexandriicola marinus gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from marine phycosphere

Two yellow-pigmented bacterial strains, LZ-14 ^(T) and ABI-LZ29, were isolated from the cultivable phycosphere microbiota of the highly toxic marine dinoflagellate Alexandrium catenella LZT09 and demonstrated obvious microalgae growth-promoting potentials toward the algal host. To elucidate the taxonomic status of the two bioactive bacterial strains, they were subjected to a polyphasic taxonomic characterization. Both strains were found to be Gram-negative, aerobic, rod-shaped and motile; to…

Alexandriicola marinus gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from marine phycosphere

Two yellow-pigmented bacterial strains, LZ-14 ^(T) and ABI-LZ29, were isolated from the cultivable phycosphere microbiota of the highly toxic marine dinoflagellate Alexandrium catenella LZT09 and demonstrated obvious microalgae growth-promoting potentials toward the algal host. To elucidate the taxonomic status of the two bioactive bacterial strains, they were subjected to a polyphasic taxonomic characterization. Both strains were found to be Gram-negative, aerobic, rod-shaped and motile; to…

A robust approach to estimate relative phytoplankton cell abundances from metagenomes

Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of…

A robust approach to estimate relative phytoplankton cell abundances from metagenomes

Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of…

First record of the spatial organization of the nucleosome-less chromatin of dinoflagellates: The nonrandom distribution of microsatellites and bipolar arrangement of telomeres in the nucleus of Gambierdiscus australes (Dinophyceae)

Dinoflagellates are a large group of protists whose exceptionally large genome is organized in permanently condensed nucleosome-less chromosomes. In this study, we examined the potential role of repetitive DNAs in both the structure of dinoflagellate chromosomes and the architecture of the dinoflagellate nucleus. Non-denaturing fluorescent in situ hybridization (ND-FSH) was used to determine the abundance and physical distribution of telomeric DNA and 16 microsatellites (1- to 4-bp repeats) in…

First record of the spatial organization of the nucleosome-less chromatin of dinoflagellates: The nonrandom distribution of microsatellites and bipolar arrangement of telomeres in the nucleus of Gambierdiscus australes (Dinophyceae)

Dinoflagellates are a large group of protists whose exceptionally large genome is organized in permanently condensed nucleosome-less chromosomes. In this study, we examined the potential role of repetitive DNAs in both the structure of dinoflagellate chromosomes and the architecture of the dinoflagellate nucleus. Non-denaturing fluorescent in situ hybridization (ND-FSH) was used to determine the abundance and physical distribution of telomeric DNA and 16 microsatellites (1- to 4-bp repeats) in…

Unveiling the genomic structures and evolutionary events of the saxitoxin biosynthetic gene sxtA in the marine toxic dinoflagellate Alexandrium

Marine dinoflagellates Alexandriumare known to produce saxitoxin (STX) and cause paralytic shellfish poisoning (PSP) which can result in mortality in human. SxtA is considered a core gene for the biosynthesis of STX. However, its gene coding structure and evolutionary history have yet to be fully elucidated. Here, we determined the full-length sequences of sxtA cDNA and genomic coding regions from two toxic dinoflagellates, Alexandrium catenella (LIMS-PS-2645 and LIMS-PS-2647) andA. pacificum…